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Abstract. We compute long-distance effects on the photon energy spectrum in inclusive radiative decays of
B mesons using light-cone expansion and heavy-quark effective theory. We show that for sufficiently high
photon energy, the leading nonperturbative QCD contribution is attributed to the distribution function.
The distribution function is found to be universal in the sense that the same distribution function also
encodes the leading nonperturbative contribution to inclusive semileptonic decays of B mesons at large
momentum transfer. Some basic properties of the distribution function are deduced in QCD. Ways of
extracting the distribution function directly from experiment and their implications are discussed. The
theoretically clean methods for the determination of |Vts| are described.

1 Introduction

The study of the inclusive radiative decay B → Xsγ, where
Xs is any possible final state of total strangeness −1, is a
broad subject with many areas of investigation. The decay
is a flavor-changing neutral current process that is forbid-
den at tree level, only proceeding through what is called an
electroweak penguin diagram [1–8] in the standard model.
This is a one-loop graph inducing b→ s+photon with a
W boson and a quark, predominantly the top quark, in
the loop. Measurements of this rare process provide one
of the most stringent experimental tests of the standard
model at one-loop level. It can be used to determine the
fundamental Cabibbo–Kobayashi–Maskawa (CKM) mix-
ing matrix element |Vts| and test its unitarity, and may
offer new insight into the nature of confinement.

Meanwhile, because the decay is highly suppressed in
the standard model, it could be particularly sensitive to
new physics beyond the standard model. Measurements of
B → Xsγ decays would impose constraints on new physics
models. In particular, new contributions from nonstan-
dard particles replacing the standard model particles in
the loop can be detected prior to a direct production of
such new particles at much higher energies. A clear de-
viation from standard model expectations would signal
new physics from supersymmetry, charged Higgs scalars,
anomalous WWγ couplings, etc.

Observation of the inclusive radiative decay B → Xsγ
was reported in 1995 by the CLEO Collaboration, who
obtained the first measurement of the branching ratio of
(2.32 ± 0.57 ± 0.35) × 10−4 [9]. The ALEPH Collabora-
tion has reported a measurement of the corresponding
branching ratio of beauty hadrons produced at the Z res-
onance, obtaining the branching ratio of (3.11 ± 0.80 ±
0.72) × 10−4 [10]. Recently, the CLEO Collaboration has
improved their measurement, using 60% additional data

and improved analysis techniques, and yielding a new pre-
liminary result of the branching ratio of (3.15 ± 0.35 ±
0.32 ± 0.26) × 10−4 [11]. Copious data samples from the
rare decays B → Xsγ will soon be collected at B facto-
ries. The accuracy of the B → Xsγ measurement will be
significantly improved shortly.

Significant progress has been made in the theoretical
prediction of the branching ratio for B → Xsγ in the stan-
dard model. The next-to-leading order (NLO) calculation
of the perturbative QCD corrections has been completed
recently, combining the calculations of the matching con-
ditions of the Wilson coefficients [12–15], the matrix ele-
ments [16–18], and the anomalous dimensions [19]. This
achievement leads to a substantial reduction of the large
renormalization scale dependence of the leading-order re-
sult [20–28]. The leading power corrections in 1/m2

b [29,
30] and 1/m2

c [31–35] have been calculated in the con-
text of the heavy-quark expansion. In addition, the lead-
ing electroweak radiative corrections have recently been
investigated [36,37].

It is, however, not sufficient to have a reliable calcula-
tion of the total decay rate. Experimentally, only events in
the high-energy region of the photon energy spectrum in
B → Xsγ decays have been used to measure the branching
ratio, so that backgrounds from other B-decay processes
would be suppressed. An accurate and reliable theoreti-
cal description of the photon energy spectrum is essential
in order to perform a fit to the experimental data and
extrapolate to the total decay rate. The study of the pho-
ton energy spectrum is also quite interesting in its own
right, since it can probe the decay dynamics in more de-
tail than the total rate. Strong interaction effects can sig-
nificantly modify the photon energy spectrum. The fol-
lowing fact well illustrates the situation. It is well known
that the quark-level and virtual-gluon exchange processes
b→ sγ generate a trivial photon energy spectrum – a dis-
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crete line at Eγ = mb/2 in the b-quark rest frame. It is
two distinct effects, gluon-bremsstrahlung and hadronic
bound-state effects, that spread out the spectrum. Gluon
bremsstrahlung results in a long tail in the photon spec-
trum below mb/2. Bound-state effects lead to the exten-
sion of phase space from the parton level to the hadron
level, stretch the spectrum downward below mb/2 and are
solely responsible for populating the spectrum upward in
the gap between the parton level endpoint Eγ = mb/2
and the hadron-level endpoint Eγ = MB/2.

The perturbative QCD corrections to the photon en-
ergy spectrum are known at order αs [18], and the order
α2

sβ0 contribution has recently been computed [38] away
from the endpoint Eγ = mb/2 in the perturbation ex-
pansion of the matrix elements. The relevant Wilson co-
efficients in the effective weak Hamiltonian are known to
next-to-leading logarithmic accuracy [19] in renormaliza-
tion-group improved perturbative QCD. Currently non-
perturbative QCD effects comprise the potentially most
serious source of theoretical error in the photon energy
spectrum. Long-distance QCD effects are relevant for the
improvement of the accuracy of an analysis and the un-
derstanding of theoretical uncertainties in the standard
model, as well as for the search for new physics by the con-
frontation of standard model predictions with the data. In
view of this, it is important to address the issue as rigor-
ously and completely as possible. The Fermi motion of the
b quark in the B meson has been taken into account in [16]
by use of the phenomenological model by Altarelli, et al.
[39]. A more fundamental treatment of bound-state effects
based on the heavy-quark expansion has been developed
by the resummation of an infinite set of leading-twist op-
erators into a shape function [40–42]. Recently, an analysis
of long-distance effects on the photon spectrum has been
performed [37] along these lines, including for the first
time the full NLO perturbative QCD corrections.

In this paper, we will compute the long-distance QCD
contributions to the photon energy spectrum using light-
cone expansion and heavy-quark effective theory (HQET).
These ideas and techniques have originally been exploited
in the theoretical description of inclusive semileptonic de-
cays of beauty hadrons [43]. This approach has been re-
lated [44] to the aforementioned similar approach based on
the resummation of the heavy-quark expansion [40–42]. In
this paper, we extend our previous analyses to inclusive
radiative decays of B mesons. We strive to present our
approach in a more detailed and complete form.

Beauty hadrons are the heaviest hadrons actually
formed, because the top quark is too heavy to build
hadrons; this confers a special role to beauty hadrons.
The beauty-hadron decays involve two large scales: the
heavy beauty-hadron mass at the hadron level and the
heavy b-quark mass at the parton level, both of which are
much greater than the energy scale ΛQCD which charac-
terizes the strong interactions. The two large scales give
rise to two techniques for dealing with nonperturbative
QCD. Because of the heaviness of the decaying hadron,
the decay dynamics may be dominated by the space-time
separations in the neighborhood of the light cone. The

light-cone expansion provides a formal and powerful way
of organizing the nonperturbative QCD effects and sin-
gling out the leading term. On the other hand, the heavy-
quark mass provides a large limit to construct an effective
theory describing the heavy quark interacting with the
gluons in the heavy hadron. This so-called heavy-quark
effective theory has new (approximate) symmetries that
were not manifested in the full QCD Lagrangian, and sets
another framework for organizing and parametrizing non-
perturbative effects that relates various phenomena (e.g.,
the hadron spectroscopy and weak decays of hadrons con-
taining a single heavy quark) to a common set of param-
eters, so that it has great predictive power. It is certainly
useful to calculate long distance QCD effects on the pho-
ton energy spectrum in B → Xsγ decays using light-cone
expansion and heavy-quark effective theory.

The paper is organized as follows. In Sect. 2, we gener-
alize the results of [43] and construct the light-cone expan-
sion for the photon energy spectrum in B → Xsγ decays.
We show that for sufficiently high photon energy, the lead-
ing nonperturbative QCD contribution is attributed to a
distribution function. We define a new, gauge-invariant
distribution function. The connection between the non-
perturbative QCD effects in radiative and semileptonic
inclusive B decays is subsequently established in Sect. 3.
For the sake of completeness, we study the properties of
the new distribution function in Sect. 4. We discuss the
direct extraction of the distribution function from experi-
ment and precise determinations of the CKM matrix ele-
ments in Sect. 5. We hope to motivate the measurement of
the distribution function by pointing out its importance
in inclusive B decays and the ways to measure it. Section
6 briefly summarizes the main results.

2 Light-cone expansion for B → Xsγ decays

We shall study inclusive radiative decays B(P ) → Xs(pX)
γ(pγ). A suitable framework for doing that is an effec-
tive low-energy theory, obtained by integrating out the
heavy particles, which in the standard model are the top
quark and the W boson [23]. Since we shall concentrate
on long-distance effects, it suffices for us to work at lowest
order in electroweak interactions ignoring for the moment
perturbative QCD and electroweak radiative corrections.
To lowest order, B → Xsγ decays are governed by the
effective weak Hamiltonian involving a magnetic dipole
operator:

Heff = κs̄σµνR bFµν , (1)

where the coupling constant

κ = −GFemb

4
√

2π2
VtbV ∗

tsC
(0)
7 (MW) (2)

gauges the strength of the b→ sγ transition, R = (1 +
γ5)/2 is the right-handed projection operator, and Fµν

is the electromagnetic field strength tensor. In (2), Vtb
and Vts are the CKM matrix elements, and the function
C

(0)
7 (MW) depends on the masses of the internal top quark

and W boson, and takes the form [5]



C. Jin: Long-distance effects on the B → Xsγ photon energy spectrum 337

C
(0)
7 (MW) =

3x3
t − 2x2

t

4(xt − 1)4
lnxt − 8x3

t + 5x2
t − 7xt

24(xt − 1)3
(3)

with xt = m2
t/M

2
W. We use mb to denote the b-quark mass

and MB to denote the B-meson mass. It can be shown that
contributions of the strange quark mass to the decay rate
are suppressed by the very small factor m2

s/m2
b. Hence we

neglect the strange quark mass unless noted otherwise.
The decay rate for B → Xsγ is given by

dΓ =
1

2EB

d3pγ

(2π)32Eγ

∑
Xs,ε

(2π)4δ4(P − pγ − pX)

×|〈Xs(pX)γ(pγ , ε)|Heff |B(P )〉|2, (4)

where we sum over all possible final states of total
strangeness −1 as well as the two transverse polarizations
of the photon. We adopt the standard covariant normal-
ization 〈B|B〉 = 2EB(2π)3δ3(0) for the B-meson state.
The decay rate can be expressed in terms of a current
commutator taken between the B-meson states which in-
corporates all nonperturbative QCD physics of the weak
radiative B-meson decay. We find

dΓ =
|κ|2
2EB

d3pγ

(2π)32Eγ

×
∫

d4y eipγ ·y〈B ∣∣[J†
µ(y), Jµ(0)]

∣∣B〉, (5)

with the generalized current Jµ(y) = b̄(y)[γµ, pγ/ ]Ls(y),
where L = (1 − γ5)/2 is the left-handed projection op-
erator.

The commutator in (5) has to vanish for space-like sep-
arations y2 < 0 due to causality. Moreover, the behavior
of the integral in (5) is determined by the integrand in do-
mains with less rapid oscillations, i.e., |pγ · y| ∼ 1, which
implies y2 . 1/E2

γ . Combining these results we find that
the dominant contribution to the integral in (5) results
from the space-time region 0 ≤ y2 . 1/E2

γ . This implies
that for sufficiently high photon energy, Eγ � ΛQCD, the
space-time separations in the neighborhood of the light
cone y2 = 0 dominate the decay dynamics. It is then ap-
propriate to construct a light-cone expansion to calculate
the photon energy spectrum in the high-energy region.

The decay-produced strange quark propagating in a
background gluon field obeys the anticommutation rela-
tion

{s(x), s̄(y)} = (i∂x/ + ms)i∆s(x − y)U(x, y), (6)

with the Wilson link

U(x, y) = Pexp[igs

∫ x

y

dzµAµ(z)] (7)

between the quark fields at y and x, where P denotes path
ordering. Here the strange-quark mass ms 6= 0 is retained.
The background gluon field Aµ is that generated by the
remnants of the decaying B meson. ∆q(y) is the Pauli–
Jordan function of the form [45]

∆q(y) = − i
(2π)3

∫
d4k e−ik·yε(k0)δ(k2 − m2

q) (8)

= − 1
2π

ε(y0)δ(y2) +
mq

4π
√

y2
ε(y0)θ(y2)J1(mq

√
y2).

Here J1(z) is the Bessel function of order 1. From (8) we
see that ∆q(y) is singular on the light cone and would also
select out light-cone contributions were it not for high-
frequency variations in the phase. Using the anticommu-
tation relation (6), we find

[J†
µ(y), Jµ(0)]

= 16pγαpγβ
[i∂αi∆s(y)]b̄(0)γβRU(0, y)b(y). (9)

Substituting (9) in (5), it follows that

dΓ =
|κ|2
2EB

d3pγ

(2π)32Eγ
8pγα

pγβ

∫
d4y eipγ ·y[i∂αi∆s(y)]

×〈B|b̄(0)γβU(0, y)b(y)|B〉. (10)

Note that the matrix element of b̄(0)γβγ5U(0, y)b(y) be-
tween the B-meson states vanishes by parity invariance in
the strong interactions.

Now let us consider the matrix element of the bilocal
operator in (10). The general tensor decomposition of it
reads

〈B|b̄(0)γβU(0, y)b(y)|B〉
= 2[P βF (y2, y · P ) + yβG(y2, y · P )], (11)

where F (y2, y · P ) and G(y2, y · P ) are in general func-
tions of the two independent Lorentz scalars, y2 and y ·P .
Contracting both sides of (11) with yβ gives

〈B|b̄(0)y/U(0, y)b(y)|B〉
= 2[y · PF (y2, y · P ) + y2G(y2, y · P )]. (12)

In the domain of interest where |pγ · y| ∼ 1 and 0 ≤ y2 .
1/E2

γ , we infer from (12) that the contribution of G(y2, y ·
P ) is suppressed by a factor 1/E2

γ for the high photon
energy considered here, as compared to that of F (y2, y ·
P ). In addition, we can make a light-cone expansion for
F (y2, y · P ), which is justified for high photon energy as
discussed above,

F (y2, y · P ) =
∞∑

n=0

(y2)n

n!

[
dnF (y2, y · P )

dy2n

]
y2=0

. (13)

The nth term in the light-cone expansion is suppressed by
1/E2n

γ . Therefore, in the leading-twist approximation we
then have

〈B|b̄(0)γβU(0, y)b(y)|B〉 = 2P βF (y2 = 0, y · P ). (14)

The contributions from F (y2 6= 0, y · P ) and G(y2, y ·
P ) represent higher twist effects. They become important
only at the subleading level, an issue that will not be dwelt
upon here.

On the light cone, F (y2 = 0, y · P ) can be projected
out of the general decomposition (12):

F (y2 = 0, y · P ) =
1

2y · P
〈B|b̄(0)y/U(0, y)b(y)|B〉|y2=0.(15)
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The Fourier transform of F (y2 = 0, y · P ) defines the dis-
tribution function

f(ξ) =
1
2π

∫
d(y · P ) eiξy·P F (y2 = 0, y · P ) (16)

=
1
4π

∫
d(y · P )

y · P
eiξy·P 〈B|b̄(0)y/U(0, y)b(y)|B〉|y2=0.

The Wilson link is associated with the background gluon
field, which ensures gauge invariance of the distribution
function. The leading nonperturbative QCD contribution
contained in F (y2 = 0, y ·P ) is equivalently translated into
the distribution function.

Using the inverse Fourier transform

F (y2 = 0, y · P ) =
∫

dξ e−iξy·P f(ξ) , (17)

substituting (8) and (14) in (10), and then carrying out the
phase space integration, we arrive at the photon energy
spectrum in the B rest frame

dΓ (B → Xsγ)
dEγ

=
G2

Fαm2
b

2π4MB
|VtbV ∗

ts|2|C(0)
7 (MW)|2E3

γf

(
2Eγ

MB

)
. (18)

Equation (18) holds in the leading-twist approximation,
which is expected to be a good approximation for the en-
ergy of the emitted photon of around 1 GeV and above.
The precise shape of the spectrum near the lower end-
point Eγ = 0 is not available to us, where the light-
cone expansion is not applicable and higher twist terms
give contributions of the same order as the leading-twist
term. However, given the experimental [9–11] and theoret-
ical [16,42,37] indications that the spectrum for Eγ < 1
GeV appears to be vanishingly small, a more accurate ac-
count of the rather small overall nonperturbative contribu-
tions in this region seems numerically unimportant. This
is not unexpected, since the photon energy spectrum stem-
ming from the quark-level and virtual-gluon exchange pro-
cesses would only concentrate at Eγ = mb/2 ≈ 2.45 GeV,
and gluon-bremsstrahlung and hadronic bound-state ef-
fects smear the spectrum about this point, but most of
the decay rate remains at large values of Eγ . For practi-
cal purposes, this approach would nonetheless provide a
realistic description of the photon spectrum over the full
kinematic range 0 ≤ Eγ ≤ MB/2 = 2.64 GeV. Of course,
one should keep in mind that for the photon spectrum near
the lower endpoint, one has nothing from the approach to
be verified or falsified.

Finally, let us discuss the relationship between our ap-
proach and the approach advocated in [40–42] based on
the resummation of the heavy-quark expansion. By assum-
ing Eγ = mb/2 for the factor E3

γ in (18) we can reproduce
the formulas for the B → Xsγ photon energy spectrum ob-
tained in [41,42]. In that case, the photon energy is fixed
to the value in the free-quark limit, instead of varying in
its entire kinematic range from 0 to MB/2.

3 Universality

In this section we compare the inclusive radiative decay
with the inclusive semileptonic decays of B mesons B →
Xf `ν (f = u, c) in order to decipher the universal, process-
independent structure in the relevant realm of hadron
physics.

Inclusive semileptonic decays of B mesons at large mo-
mentum transfer carried by the W boson are also gov-
erned by the light-cone dynamics [43]. The nonperturba-
tive QCD effects on the decays reside in the hadronic ten-
sor

Wµν = − 1
2π

∫
d4y eiq·y〈B|[jµ(y), j†

ν(0)]|B〉, (19)

where the charged weak current jµ(y) = f̄(y)γµ(1−γ5)b(y).
Calculating the charged weak current commutator in the
same way as in the last section yields

〈B| [jµ(y), j†
ν(0)

] |B〉 = 2(Sµανβ − iεµανβ) [∂α∆f (y)]

×〈B|b̄(0)γβU(0, y)b(y)|B〉 , (20)

where Sµανβ = gµαgνβ +gµβgνα−gµνgαβ . We observe here
the very same matrix element, 〈B|b̄(0)γβU(0, y)b(y)|B〉,
entering the decay rate for the inclusive semileptonic de-
cays of B mesons.

The twist expansion of the bilocal operator matrix ele-
ment then leads to the expression of the differential decay
rate in the B rest frame in terms of the distribution func-
tion f(ξ) defined in (16):

d3Γ (B → Xf `ν)
dE`dq2dq0

=
G2

F|Vfb|2
4π3MB

q0 − E`√
|q|2 + m2

f

×{f(ξ+)(2ξ+E`MB − q2) − (ξ+ → ξ−)
}

, (21)

where

ξ± =
q0 ±

√
|q|2 + m2

f

MB
, (22)

and mf is the mass of the decay-produced quark, which
is the up (charm) quark with f = u(c). All the lepton
masses have been neglected. Therefore, the distribution
function describes leading long-distance QCD effects not
only in inclusive radiative B decays, but also in inclusive
semileptonic B decays, and is thus a universal function.
This universality originates from the fact that the pri-
mary object of analysis in long-distance effects is the same
bilocal operator matrix element dictated by the light-cone
dynamics.

The b-quark distribution function f(ξ) defined in (16)
differs from the definition given in [43]. The difference
is that the distribution function defined here is gauge-
invariant, and its inverse Fourier transform is exactly equal
to the leading-twist term F (y2 = 0, y · P ), whereas the
distribution function of [43] is defined in the light-cone
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gauge and its inverse Fourier transform is equal to F (y2 =
0, y · P ) in the leading-twist approximation. However, we
note that the expressions for the inclusive semileptonic B-
decay rates derived previously [43] in terms of the distribu-
tion function remain formally the same if the distribution
function defined in this paper is used. This is exemplified
by (21) for the triple differential decay rate.

4 Properties of the distribution function

The b-quark distribution function is an important phys-
ical quantity which summarizes leading long-distance ef-
fects on inclusive B-decay processes. Equation (18) shows
that the photon energy spectrum depends strongly on the
distribution function. In Sect. 2 we defined the b-quark
distribution function in QCD by modifying the definition
given in [43]. In this section, we rederive several important
properties of the distribution function. Since it is gauge-
invariant, it can be calculated in any gauge. For simplic-
ity, we shall choose the light-cone gauge in the following
discussion so that the Wilson link becomes the identity
operator.

It is helpful to introduce the null vector nµ = (1, 0, 0,
−1) at this step, such that the light-like vector yµ = tnµ,
where t is a parameter. Using this notation, the distribu-
tion function defined in (16) can be rewritten as follows:

f(ξ) =
1
2π

∫
dt eiξtn·P 〈B|b†

+(0)b+(tn)|B〉, (23)

where b+ = P+b is the “good” component projected out
of the b-quark field, with the projection operator P+ =
(1 + γ0γ3)/2. Inserting a complete set of hadronic states
between quark fields and translating the tn dependence
out of the field, we find

f(ξ) =
∑
m

δ[n · (P − ξP − pm)]|〈m|b+(0)|B〉|2. (24)

So the distribution function obeys positivity. The state
|m〉 is physical and must have 0 ≤ p0

m ≤ EB, thus f(ξ) = 0
for ξ ≤ 0 or ξ ≥ 1. Therefore, the support of the distribu-
tion function reads 0 ≤ ξ ≤ 1. Moreover, one can observe
from (24) that f(ξ) is the probability of finding a b quark
with momentum ξP inside the B meson. This is the fa-
miliar probabilistic interpretation of the parton model [46]
for inclusive B decays.

From (17) and (11) it is straightforward to show that

∫ 1

0
dξ f(ξ) = F (y = 0) = 1, (25)

because b-quantum number conservation implies

〈B|b̄γµb|B〉 = 2Pµ. (26)

Thus the distribution function is exactly normalized to
unity. The normalization does not get renormalized as a
consequence of b-quantum number conservation.

To understand B-meson bound-state effects, it is in-
structive to consider first of all the form of the b-quark
distribution function in the free-quark limit. In this limit,
the B meson and the b quark in it move together with
the same velocity: pb/mb = P/MB ≡ v and the free Dirac
field b(y) = e−iy·pbb(0), so from (16) it follows that

ffree(ξ) = δ(ξ − mb/MB). (27)

Substituting (27) in (18), it consistently reduces to the free
quark decay spectrum in the rest frame of the b quark

dΓ (b → sγ)
dEγ

=
G2

Fαm5
b

32π4 |VtbV ∗
ts|2|C(0)

7 (MW)|2δ
(
Eγ − mb

2

)
,

(28)
which is a discrete line at Eγ = mb/2. Conversely, the
physical photon spectrum is obtained from a convolution
of the hard perturbative spectrum with the soft nonper-
turbative distribution function f(ξ):

dΓ (B → Xsγ)
dEγ

=
∫ 1

0
dξ f(ξ)

dΓ (b → sγ, pb = ξP )
dEγ

, (29)

where the b-quark momentum pb in the perturbative spec-
trum is replaced by ξP . The bound-state smearing of the
photon energy spectrum is then reflected in the deviation
of the true distribution function from the delta function
form. The quantitative analysis of this deviation is the
subject of the rest of this section.

Additional properties of the distribution function can
be deduced by means of operator product expansion and
heavy-quark effective theory. The derivation proceeds in
essentially the same manner as in [43], but for the differ-
ent definition of the distribution function. We present the
corresponding derivation for the new distribution function
below for completeness.

Since the b quark inside the B meson behaves as almost
free due to its large mass, relative to which its binding to
the light constituents is weak, one can extract the large
space-time dependence

b(y) = e−imbv·ybv(y). (30)

A Taylor expansion of the field in a gauge-covariant form
relates the bilocal and local operators. This leads to an
operator product expansion

b̄(0)γβb(y) = e−imbv·y
∞∑

n=0

(−i)n

n!
yµ1 · · · yµn

×b̄v(0)γβk{µ1 · · · kµn}bv(0), (31)

where kµ = iDµ = i(∂µ − igsAµ) and the symbol {· · ·}
means symmetrization with respect to the enclosed in-
dices. Using Lorentz covariance, one can express the ma-
trix element of the local operator on the right-hand side of
(31) between the B-meson states in terms of the B-meson
momentum:

〈B|b̄v(0)γβk{µ1 · · · kµn}bv(0)|B〉
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= 2

(
Cn0P

βPµ1 · · ·Pµn +
n∑

i=1

M2
BCnig

βµiPµ1

· · ·Pµi−1Pµi+1 · · ·Pµn

)
+ terms with gµiµj . (32)

The terms with gµiµj drop out on the light cone. Substi-
tuting (31) and (32) into (16) yields

f(ξ) =
∞∑

n=0

(−1)n

n!
Cn0δ

(n)
(

ξ − mb

MB

)
. (33)

Therefore we obtain the moment relation for the distribu-
tion function

Mn(mb/MB) = Cn0, (34)

where the nth moment about a point ξ̃ of the distribution
function is in general defined by

Mn(ξ̃) =
∫ 1

0
dξ(ξ − ξ̃)nf(ξ). (35)

By definition, M0(ξ̃) = C00 = 1. The moment relation
(34) relates the moments of the distribution function to
the matrix elements of the local operators in (32).

We invoke heavy-quark effective theory to evaluate fur-
ther expansion coefficients in (32). In this effective theory,
the QCD b-quark field b(y) is related to its HQET coun-
terpart h(y) by means of an expansion in powers of 1/mb:

b(y) = e−imbv·y
[
1 +

i/D

2mb
+ O(

Λ2
QCD

m2
b

)

]
h(y). (36)

The effective Lagrangian takes the form

LHQET = h̄iv · Dh + h̄
(iD)2

2mb
h + h̄

gsGαβσαβ

4mb
h + O(

1
m2

b
),

(37)
where gsG

αβ = i[Dα, Dβ ] is the gluon field-strength ten-
sor. Only the first term in (37) remains in the mb → ∞
limit, which respects the heavy-quark spin and flavor sym-
metries. The other two terms give the 1/mb corrections:
The second term violates the heavy-flavor symmetry, while
the third term violates both the spin and flavor symme-
tries. Using the method described in [47–49] to relate ma-
trix elements of local operators in full QCD to those in
the HQET, the expansion coefficients Cnl in (32) can be
expressed in terms of the HQET parameters. The non-
perturbative QCD effects can, in principle, be calculated
in a systematic manner. In this formalism, the moment
Mn(mb/MB) is expected to be of order (ΛQCD/mb)n. A
few coefficients have been evaluated and the results are
[43]

C10 =
5mb

3MB
Eb + O(Λ3

QCD/m3
b), (38)

C11 = − 2mb

3MB
Eb + O(Λ3

QCD/m3
b), (39)

C20 =
2m2

b

3M2
B

Kb + O(Λ3
QCD/m3

b), (40)

C21 = C22 = 0, (41)

where Eb = Kb+Gb and Kb and Gb are the dimensionless
HQET parameters of order (ΛQCD/mb)2, which are often
referred to by the alternate names λ1 = −2m2

bKb and
λ2 = −2m2

bGb/3, defined as

λ1 =
1

2MB
〈B|h̄(iD)2h|B〉, (42)

λ2 =
1

12MB
〈B|h̄gsGαβσαβh|B〉. (43)

The parameter λ2 can be extracted from the B∗ −B mass
splitting: λ2 = (M2

B∗ − M2
B)/4 = 0.12 GeV2. The param-

eter λ1 suffers from large uncertainty.
Thus two sum rules for the distribution function can

be derived according to the moment relation (34). They
determine up to order (ΛQCD/mb)2 the mean value µ and
the variance σ2 of the distribution function, which char-
acterize the location of the “center of mass” of the distri-
bution function and the square of its width, respectively:

µ =
mb

MB

(
1 +

5Eb

3

)
, (44)

σ2 =

(
mb

MB

)2[
2Kb

3
−
(

5Eb

3

)2]
, (45)

with the definitions

µ ≡ M1(0) = ξ̃ + M1(ξ̃), (46)

σ2 ≡ M2(µ) = M2(ξ̃) − M2
1 (ξ̃). (47)

The mean value and variance specify the primary shape of
the distribution function. Therefore, our evaluation comes
to the conclusion that the distribution function f(ξ) is
sharply peaked around ξ = µ ≈ mb/MB, close to 1, and
its width of order ΛQCD/MB is narrow.

The sum rules given in (44) and (45) quantify the de-
viation of the true distribution function from the delta
function form due to bound-state effects. Choosing the
parameters mb = 4.9 GeV and λ1 = −0.5 GeV2 for
the purpose of orientation, we obtain from (44) and (45)
µ = 0.933 and σ2 = 0.006. By contrast, the mean value
µ = mb/MB = 0.928 and the variance σ2 = 0 in the
free-quark limit.

The results for the mean value and the variance given
in (44) and (45) are at variance with those of [43] because
of the different definitions of the distribution function.
However, the corresponding numerical shifts are found to
be so small that the phenomenological impacts of these
differences are negligible.

Nonperturbative QCD methods such as lattice simula-
tion and QCD sum rules could help determine further the
form of the distribution function. The distribution func-
tion could also be extracted directly from experiment, as
we shall discuss below.
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5 Measurements of the distribution function
and determinations
of the CKM matrix elements

The universality of the distribution function discussed in
Sect. 3 enhances the predictive power of the approach:
The distribution function can be extracted from measure-
ments of one process and then used to make predictions in
all other processes in a model-independent manner. In this
section, we start by exploring how to extract the distribu-
tion function from experiment. Then we will investigate
the theoretically clean methods for the determination of
the CKM matrix element |Vts|.

The spectrum result (18) can be cast in the following
form:

|VtbV ∗
ts|2f

(
2Eγ

MB

)
=

2π4MB

G2
Fαm2

b|C(0)
7 (MW)|2

1
E3

γ

×dΓ (B → Xsγ)
dEγ

. (48)

This immediately implies that the distribution function
can be extracted directly from a measurement of the pho-
ton energy spectrum upon implementation of perturbative
QCD and electroweak radiative corrections, which have
so far been ignored in this paper. The experimental data
on the photon energy spectrum are already available [9–
11], but too limited by statistics for a meaningful extrac-
tion of the distribution function to be made. Forthcoming
very large data samples from high-luminosity B factories
promise a direct extraction of the distribution function
with reasonable accuracy. Such a determination of the
distribution function would help substantially to reduce
the theoretical uncertainties in the descriptions of both
semileptonic and radiative inclusive decays of B mesons.
The distribution function extracted from B → Xsγ can be
applied, for example, in the calculations of the lepton en-
ergy spectrum and the hadronic invariant mass spectrum
in charmless inclusive semileptonic decays B → Xu`ν, so
that the precision of the |Vub| determination from these
spectra can be improved.

The distribution function can also be extracted di-
rectly from the measurements of the differential decay
rates as a function of the scaling variable ξ+ [note that
ξ+ is a different kinematic variable for B → Xu`ν and
B → Xc`ν, defined in (22)] in the inclusive semileptonic
decays of B mesons [50]:

|Vfb|2f(ξ+) =
192π3

G2
FM5

B

1
ξ5
+Φ(rf/ξ+)

dΓ (B → Xf `ν)
dξ+

, (49)

where rf = mf/MB (f = u, c) and Φ(x) = 1 − 8x2 +
8x6 − x8 − 24x4lnx. Such a determination of the distri-
bution function would also benefit the theoretical descrip-
tions of both semileptonic and radiative inclusive decays
of B mesons. In particular, once such an extraction of
the distribution function is available, it can in turn be
applied as an independent input in the analysis of the

B → Xsγ photon energy spectrum. This would substan-
tially improve the standard model predictions and increase
the sensitivity to new physics. Therefore, this extraction
of the distribution function is valuable in the search for ad-
ditional decay mechanisms beyond the standard model in
B → Xsγ decays. The experimental technique of neutrino
reconstruction could well make this way of extracting the
distribution function experimentally feasible. If the neu-
trino can be reconstructed kinematically by the inferring
of its four-momentum from the missing energy and missing
momentum in each event, then it is possible to measure
the scaling variable ξ+.

It is important to note that the B → Xsγ photon en-
ergy spectrum and the B → Xf `ν spectra dΓ/dξ+ share a
common feature – namely, they offer the intrinsically most
sensitive probe of long-distance strong interactions, be-
cause these spectra correspond to a discrete line solely on
kinematic grounds in the absence of gluon-bremsstrahlung
and long-distance strong interactions. Indeed, our calcula-
tion based on the light-cone expansion shows that they are
explicitly proportional to the nonperturbative distribution
function. Therefore, the shapes of these spectra directly
reflect the inner long-distance dynamics of the reactions,
and measurements of these spectra are ideally suited for
direct extraction of the distribution function from exper-
iment. This salient feature also makes the b→ u scaling
variable ξ+ unique to give a very efficient discrimination
between B → Xu`ν and B → Xc`ν events [50], even better
than the hadronic invariant mass.

Given the difficulty in distinguishing t→ s decays from
the dominant t→ b decay mode, it is hard to determine
|Vts| from studies of top-quark decays. Based on the results
obtained in this paper and in [50], we propose a new strat-
egy for extracting |Vts| that is largely free of hadronic un-
certainties. The idea is to use the known normalization of
the distribution function or the cancellation of the distri-
bution function in the ratio of the decay rates to eliminate
the dominant hadronic uncertainties. The most straight-
forward and best way to eliminate the dependence on the
distribution function is to resort again to the B → Xsγ
photon energy spectrum and the B → Xu,c`ν spectra
dΓ/dξ+ since they are proportional to the distribution
function.

Integrating (48) over Eγ and using the normalization
condition (25) yields

|VtbV ∗
ts|2 =

4π4

G2
Fαm2

b|C(0)
7 (MW)|2

×
∫ MB/2

0
dEγ

1
E3

γ

dΓ (B → Xsγ)
dEγ

. (50)

Thus the known normalization of the distribution func-
tion allows a model-independent determination of |VtbV ∗

ts|
from a measurement of the weighted integral of the pho-
ton energy spectrum. This determination can be taken
as a measurement of |Vts| by the use of |Vtb| = 0.9993
from unitarity of the CKM matrix, which holds to a very
high accuracy [51]. The advantage of this determination of
|Vts| is that the dominant hadronic uncertainty has been
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avoided, which may provide one of the most precise deter-
minations of |Vts|.

As in the case of B → Xsγ discussed above, one can
get rid of the distribution function by integrating (49) over
ξ+ [50]:

|Vfb|2 =
192π3

G2
FM5

B

∫ 1

rf

dξ+
1

ξ5
+Φ(rf/ξ+)

dΓ (B → Xf `ν)
dξ+

.

(51)
Thus, the precise determinations of |Vub| and |Vcb| can be
obtained from the measurements of the weighted integrals
of the differential decay rates as functions of ξ+ in B →
Xu`ν and B → Xc`ν, respectively.

Alternatively, when we take the ratio of the differential
decay rates, the distribution function cancels. From (48)
and (49), we obtain∣∣∣∣VtbV ∗

ts

Vfb

∣∣∣∣
2

=
πMB

3αm2
b|C(0)

7 (MW)|2
E2

γΦ(rf/ξ+)

× dΓ (B → Xsγ)/dEγ

dΓ (B → Xf `ν)/dξ+

∣∣∣∣∣
Eγ=MBξ+/2

, (52)

which may be useful to provide a theoretically clean de-
termination of |Vts/Vfb|. By the same token, an analogous
expression has been derived in [50] for B → Xu,c`ν, which
can be used to measure |Vub/Vcb| to a high precision.
These determinations of the CKM matrix elements rely on
the universality of the distribution function, in contrast to
the method described above by virtue of the known nor-
malization of the distribution function. The compatibility
between the various measurements will test the universal-
ity of the distribution function in the inclusive semilep-
tonic and radiative decays of B mesons within the stan-
dard model.

6 Summary

In this paper we have calculated the long-distance effects
on the photon energy spectrum in B → Xsγ decays. We
have demonstrated on the basis of light-cone expansion
that the leading nonperturbative QCD contribution in in-
clusive radiative B decays with emission of a sufficiently
high energy photon resides in the distribution function.
The distribution function is defined by Fourier transfor-
mation of the matrix element of the non-local b-quark op-
erators separated along the light cone. We have found that
the distribution function is universal in the sense that the
same distribution function also summarizes the leading
nonperturbative QCD contribution in inclusive semilep-
tonic B decays at large momentum transfer.

Although long-distance strong interactions responsible
for the distribution function preclude a complete calcula-
tion of it at present, we have deduced some of its basic
properties in QCD. The distribution function is gauge-
invariant and obeys positivity. It has a support between
0 and 1 and is exactly normalized to unity because of b-
quantum number conservation. It contains the free quark

decay as a limiting case with ffree(ξ) = δ(ξ − mb/MB).
The distribution function f(ξ) can be interpreted as the
probability of finding a b quark with momentum ξP in-
side the B meson with momentum P . In addition, we have
evaluated the mean and variance of the distribution func-
tion using the techniques of operator product expansion
and heavy-quark effective theory. They specify the pri-
mary shape of the distribution function and quantify the
deviation from the delta function form in the free quark
limit.

The b-quark distribution function for the B meson is a
key object. Like the well-known parton distribution func-
tions for the nucleon in deeply inelastic lepton–nucleon
scattering, the knowledge of the b-quark distribution func-
tion would help us greatly in understanding the nature of
confinement and the structure of the B meson. One should
try to calculate it using nonperturbative QCD methods
such as lattice simulation and QCD sum rules. On the
other hand, the distribution function can be extracted di-
rectly from experimental data. The underlying common
structure of long-distance strong interactions correlates
the B → Xsγ and B → Xf `ν processes. The universality
of the distribution function implies that once it is mea-
sured from one process, it can be used to make predictions
in all other processes in a model-independent manner. We
have discussed the direct extraction of the distribution
function from the measurements of the B → Xsγ photon
spectrum or the B → Xf `ν spectra dΓ/dξ+. We stress
that these decay spectra are unique in that they offer the
intrinsically most sensitive probe of long-distance strong
interactions. The experimental extraction of the distribu-
tion function will lead to a significant improvement of
the theoretical description of the B → Xsγ photon en-
ergy spectrum, which is very important for seeking new
physics. The extracted distribution function will also im-
prove the theoretical description of inclusive semileptonic
B decays, allowing for more precise determinations of |Vub|
and |Vcb|. Moreover, a confrontation of experimental ex-
traction of the distribution function with QCD predictions
will be a test of our understanding of the B-meson struc-
ture and nonperturbative techniques. A direct extraction
of the distribution function will therefore be an important
aspect in future experiments in inclusive B-meson decays.

Measurements of B → Xsγ decays can be used to de-
termine the CKM matrix element |Vts|. We have described
the theoretically clean methods for the determinations of
the CKM matrix elements by use of the known normal-
ization of the distribution function or the cancellation of
the distribution function in the ratio of the differential
decay rates, thereby avoiding the dominant hadronic un-
certainties. The residual hadronic uncertainty in |Vts| due
to higher-twist, power-suppressed corrections is expected
to be at the level of one percent. With hadronic uncer-
tainties well under control, these methods eventually will
yield the most accurate value of |Vts|, which is, on the
other hand, probably one of the most reliable quantities
to signal new physics in B → Xsγ. The agreement of |Vts|
extracted from the flavor-changing neutral current process
B → Xsγ with the value obtained from the direct mea-
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surements plus unitarity under the assumption that the
standard model is valid can be used to impose constraints
on new physics models.

The universality of the distribution function in radia-
tive and semileptonic inclusive decays of B mesons is valid
only to the leading order in the light-cone expansion. To
what extent this is a good approximation can be tested
experimentally in a variety of ways in the B → Xsγ,
B → Xu`ν and B → Xc`ν processes. Higher-twist ef-
fects may be numerically sizeable in some region of phase
space, especially in the resonance domain. Their quanti-
tative consequences deserve a thorough investigation.

The calculation of long-distance effects presented in
this paper must be combined with the perturbative QCD
and electroweak radiative corrections to give a detailed
theoretical description of the photon energy spectrum.
Considerable care must be exercised in including radiative
corrections, which involves the interplay between pertur-
bative and nonperturbative interactions. A detailed anal-
ysis of the issue will appear elsewhere. The theoretical
development towards a treatment of inclusive radiative
decays of B mesons from first principles, in conjunction
with precision measurements made possible by B factories
in coming years, will make a decisive test of the standard
model at one-loop level and, more excitingly, may corrob-
orate the existence of new physics in inclusive radiative
decays of B mesons.
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